Uka Tarsadia University		
Diploma Engineering MCQ Question bank		
Subject Code: 020030304 Date:		
Subject Name: Structural Mechanics-I		

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Each question is of 1 mark.
- 4. Use of SIMPLE CALCULATOR is permissible. (Scientific/Higher Version not allowed)
- 5. English version is authentic.

Unit 1- Direct Stress and Strain				
1	The dimension of strain is?			
	LT ⁻²		N/m2	
	N		Dimensionless	
		•		
2	What is tensile strain?			
	The ratio of change in length to the		The ratio of original length to the change	
	original length		in length	
	The ratio of tensile force to the change in		The ratio of change in length to the	
	length		tensile force applied	
	-			
3	Find the strain of a brass rod of length 250mm v	which	is subjected to a tensile load of 50kN	
	when the extension of rod is equal to 0.3mm?	1		
	0.025		0.0012	
	0.0046		0.0014	
4	Find the elongation of a steel rod of 100mm len	gth w	when it is subjected to a tensile strain of	
	0.005?	T		
	0.2mm		0.3mm	
	0.5mm		0.1mm	
5	A tensile test was conducted on a mild steel bar.	. The	diameter and the gauge length of bat was	
	3cm and 20cm respectively. The extension was	0.211	nm. What is the value to strain?	
	0.0010		0.00105	
	0.0105		0.005	
6	i) Strain is a fundamental behaviour of a materia	al.		
	ii) Strain does not have a unit.			
	Both i and ii are true and ii is the correct		Both i and ii ate true but ii is not the	
	explanation of i		correct explanation of i	
	i is true but ii is false		ii is true but i is false	

7	A tensile test was conducted on a steel bar. The gauge length of the bar was 10cm and the extension was 2mm. What will be the percentage elongation?			
	0.002	0.02		
	0.2	2		
8	The lateral strain is			
	The ratio of axial deformation to the	The ratio of deformation in area to the		
	original length	original area		
	The strain at right angles to the direction	The ratio of length of body to the tensile		
	of applied load	force applied on it		
0	The unit of force in S. L. units is ?			
9	Kilogram	Newton		
	Watt	Dyne		
	Watt	Dyne		
10	A rod 200cm long is subjected to an axial null d	ue to which it elongates about 2mm Calculate		
10	the amount of strain?	de to which it cioligates about 211111. Calculate		
	0.001	0.01		
	0.02	0.002		
11	The property by which a body returns to its orig	inal shape after removal of the force is called		
	Diosticity	Electicity		
	Plasticity	Mallashility		
	Ductility	Maneadinty		
12	12 Which law is also called the electicity law?			
12	Bernoulli's law	Stress law		
	Hooke's law	Poisson's law		
		1015501151400		
13	3 The materials which have the same elastic properties in all directions are called			
	Isotropic	Brittle		
	Homogeneous	Hard		
14	A member which does not regain its original sha	pe after removal of the load producing		
	deformation is said			
	Plastic	Elastic		
	Rigid	None of the mentioned		
15	The body will regain its previous shape and size	only when the deformation caused by the		
15	external forces is within a certain limit What is	that limit?		
	Plastic limit	Elastic limit		
	Deformation limit	None of the mentioned		
16	As the elastic limit reaches, tensile strain			
	Increases more rapidly	Decreases more rapidly		
	Increases in proportion to the stress	Decreases in proportion to the stress		
	r r	r r		
17	What is the factor of safety?			
	The ratio of stress to strain	The ratio of permissible stress to the		
1		Ł		

		ultimate stress		
	The ratio of ultimate stress to the	The ratio of longitudinal strain to stress		
	permissible stress			
18	Where in the stress-strain curve, the hooke's law is valid?			
	Strain hardening region	Necking region		
	Elastic range	Valid everywhere		
19	What will be the ratio of Young's modulus Poisson's ratio 0.25?	to the modulus of rigidity of a material having		
	3.75	3.00		
	1.5	2.5		
20	A bar of 40mm dia and 40cm length is subjected 0.005mm. Calculate the Poisson's ratio of the r	ed to an axial load of 100 kN. It elongates by naterial of the bar?		
	0.25	0.25		
	0.30	0.33		
21	What is the stress-strain curve?			
	It is the percentage of stress and stain	It is the relationship between stress and		
		strain		
	It is the difference between stress and	None of the mentioned		
	strain			
22	The stress which acts in a direction perpendicu	lar to the None of the mentioned area is called		
	Shear stress	Normal stress		
	Thermal stress	None of the mentioned		
23	Which of these are types of normal stresses?			
	Tensile and compressive stresses	Tensile and thermal stresses		
	Shear and bending	Compressive and plane stresses		
24	Which type of stress in a reinforcement bar is t	taken by the concrete?		
	Tensile stress	Compressive stress		
	Shear stress	Bending stress		
	· · · · · · · · · · · · · · · · · · ·			
25	A material has a Poisson's ratio of 0.5. If unif	form pressure of 300GPa is applied to that		
	material, What will be the volumetric strain o	f it?		
	0.50	0.20		
	0.25	0		
26	The stress induced in a body, when subjected t	o two equal and opposite forces which are acting		
	tangentially across the resisting section resulting	ng the shearing of the body across its section is		
	Donding strong	Compressive stress		
	Shoor strain	Compressive suess		
	Silcai Su'aili	511001 511055		

27	When equal and opposite forces applied to a body, tend to elongate it, the stress so produced, is called			
	1	Shear stress		Compressive stress
		Tensile stress		Transverse stress
28	Wh	at is the formula for shear stress?		
		Shear resistance/shear area		Force/unit area
		Bending strain/area		Shear stress/length
		v v	1	
29	A ro stre	od 150cm long and of diameter 2cm is subjects?	cted t	o an axial pull of 20 kN. What will be the
		60 N/mm^2		65 N/mm ²
		63.6 N/mm ²		71.2 N/mm^2
30	The be t	stress in a rod is 70 N/mm2 and the modulu he strain in the rod?	s of e	lasticity is $E = 2 \times 10^5 \text{ N/mm}^2$. what will
		0.00052		0.00035
		0.00030		0.00047
31	What	at will be the unit of compressive stress?		
		N 2		N/mm
		N/mm ²		Nmm ²
	200	kN. If the length of the bar is $2m$ and $E=200$	GPa,	the elongation of the bar well be 2.70mm
		4.05mm		5.40mm
22	TC	1 0 1 00 1 0	1:00	
33	If a	bar of sections of two different lengths and (differ	ent diameters are in a line and P load is
	acti	ng axially on them then what will be the cha	nge 1	n length of the bar?
		$\frac{P/E \times (L1 + L2)}{D/E \times (L1/A_1 + L_2/A_2)}$		$\frac{F}{E} \times \frac{A1}{L1} + \frac{A2}{L2}$
		$\Gamma/L X (LI/AI + L2/A2)$		$L/\Gamma \times (L1/A1 + L2/A2)$
34	A co 400 will	omposite rod is 1000mm long, its two ends a mm and 600mm respectively. If the rod is su be its total elongation($E = 200$ GPa)?	are 40 abject	0 mm^2 and 30 mm^2 in area and length are ted to an axial tensile load of 1000N, what
		0.130m		0.197mm
		0.160mm		0.150mm
35	Ac	omposite rod is 1000mm long, its two ends a	are 40	0mm ² and 30mm ² in area and length are
	300	mm and 200mm respectively. The middle po	ortion	of the rod is 20mm ² in area. If the rod is
	subj	jected to an axial tensile load of 1000N, wha	t W1ll	be its total elongation ($E = 200GPa$)?
		0.145mm		0.12/mm
		0.18/mm		0.196mm
26	711	atomic anomaria a manch as to associate the		
30	1 ne	Strain energy in a member is proportional to)	Total strain multiplied by the volume of
		Froduct of stress and the strain		the member

	The maximum strain multiplied by the	Product of strain and Young's modulus	
	length of the member	of the material	
		· · ·	
37	Which of the following is hook's law?		
	$E = \sigma / \epsilon$	$E = \sigma x \epsilon$	
	$\sigma = E x \epsilon$	None of the above	
38	A rod of two sections of area 625 mm ² and 2500	0 mm ² of length 120cm and 60cm respectively. If	
	the load applied is 45kN then what will be the e	longation (E = $1.05 \times 10^5 \text{ N/mm}^2$)?	
	0.462mm	0.521mm	
	0.365mm	0.514mm	
39	A tensile load of 60kN is gradually applied to a	circular bar of 4cm diameter and 5m long.	
	What is the stretch in the rod if $E = 2 \times 10^5$ N/mr	n^2 ?	
	1.1mm	1.24mm	
	2mm	1.19mm	
40	A tensile load of 50kN is gradually applied to a	circular bar of 5cm diameter and 5m long.	
	What is the strain energy absorbed by the rod (I	E = 200 GPa)?	
	14 N-m	15.9 N-mm	
	15.9 N-m	14 N-mm	
41	What will be the elongation of a bar of 1250mm	12 area and 90cm length when applied with a	
	force of 130kN if $E = 1.05 \times 10^5 \text{ N/mm}^2$?		
	0.947mm	0.891mm	
	0.845mm	0.745mm	
42	A bar of cross-section A and length L is subject	ed to an axial load W. the strain energy stored	
	in the bar would be		
	WL/AE	W2L/4AE	
	W ₂ L/2AE	WL/4AE	
43	A member ABCD is subjected to points load P1	=45kN, P ₂ , P ₃ =450kN and P ₄ =130kN. What	
	will be the total elongation of the member, assu	ming the modulus of elasticity to be 2.1×105	
	N/mm^2 . The cross sectional area is 625mm, 250	00mm, 1250mm respectively.	
	0.4914mm	0.4235mm	
	0.4621mm	0.4354mm	
44	A rectangular block of size 400mm x 50mm x 5	0mm is subjected to a shear stress of	
	500kg/cm ² . If the modulus of rigidity of the ma	terial is 1×10^6 kg/cm ² , the strain energy will be	
	125 kg-cm	1000 kg-cm	
	500 kg-cm	100 kg-cm	
45	A steel bar of 20mm x 20mm square cross-section	on is subjected to an axial compressive load of	
	100kN. If the length of the bar is $1m$ and $E=200$)GPa, then what will be the elongation of the	
	bar?		
	1.25mm	2.70mm	
	5.40mm	4.05mm	

46	46 Strain energy stored in a body to uniform stress s of volume V and modulus of elasticity E is			
	$S^2V/2E$	SV/E		
	SV ² /E	SV/2E		
		· ·		
47	A bar is in two sections having equal lengths. T	he area of cross section of 1st is double that of		
	2nd. if the bar carries an axial load of P, then wh	hat will be the ratio of elongation in section 2nd		
	to section 1st ?			
	1/2	2		
	4	1/4		
48	What is the strain energy stored in a body due to	o gradually applied load?		
	σE/V	$\sigma E^2/V$		
	$\sigma V^2/E$	$\sigma V^2/2E$		
49	A rod, which tapers uniformly from 5cm diar	meter to 3cm diameter in a length of 50cm, is		
	subjected to an axial load of 6000N. if $E = 2,0$	0,000 N/mm ² , what will be the extension of the		
	rod?			
	0.00114cm	0.00124cm		
	0.0012/cm	0.00154cm		
50				
50	A round bar made of the same material consists	of 4 parts each of 100mm length having		
	diameters of 40mm, 50mm, 60mm and 70mm, r	espectively. If the bar is subjected to an axial		
	10ad of 10kN, what will be the total elongation ($0.4/\pi E (1/16 \pm 1/25 \pm 1/26 \pm 1/40)$)	$\frac{1}{12} = \frac{1}{12} \frac{1}{12}$		
	$\frac{0.4}{\pi E} \left(\frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49}\right)$	$\frac{4}{\pi E} \left(\frac{1}{10} + \frac{1}{25} + \frac{1}{30} + \frac{1}{49} \right)$		
	$2/\pi E(1/10 + 1/23 + 1/30 + 1/49)$	$40/\pi E (1/10 + 1/23 + 1/30 + 1/49)$		
	Unit 2 Shear Force and Der	nding moment Diegram		
	Unit 5- Shear Force and Ber	lung moment Diagram		
1	is a horizontal structural mombar sul	biastad to transversa loads normandiaular to ita		
1		bjected to transverse loads perpendicular to its		
	axis.	Column		
	Deem			
	Dealli	11055		
2	Example for cantilever beam is			
2	Portico slabs	Poofslab		
	Pridges	Pailway cleaners		
	DIRES	Kaliway Sicepcis		
2	The diagram denicts kind of heam	<u> </u>		
5				
	Cantilever	Continuous		
	Over hanging	Propped cantilever		

4	Fixed beam is also known as		
	Encastered beam	Built on beam	
	Rigid beam	Tie beam	
	· · ·		
5	U.D.L stands for?		
	Uniformly diluted length	Uniformly developed loads	
	Uniaxial distributed load	Uniformly distributed loads	
	· · ·		
6	Given below diagram is load.		
	\sim		
	$\langle \rangle \rangle \rangle \rangle \rangle$		
	Uniformly distributed load	Uniformly varying load	
	Uniformly decess load	Point load	
7	Maring train is an anarch of log 1		
/	Moving train is an example of load.		
	Point load		
	Rolling load	Uniformly varying load	
0	Continuous hooms and		
8	Continuous beams are	Station II in data main ata harmar	
	Statically determinate beams	Statically indeterminate beams	
	Statically gravity beams	Framed beams	
0	A been which extends havend it supports can b	e termed as	
9	A beam when extends beyond it supports can b	Over ener beem	
		Taa haama	
	Isolated Deallis	Tee beams	
10	Units of UDI?		
10	KN/m	KN_m	
	KN m×m	KN-III KN	
	KIN-III/III	KIN	
11	A simple support offers only reaction r	formal to the axis of the hear	
11	Horizontal	Vertical	
	Inclined	Moment	
	menned	Woment	
12	To avoid stresses in beams one end of th	e beam is placed on the rollers	
12	Compressive	Pyro	
	Temperature	Tensile	
	Temperature	TOISIIC	
13	support develops support moment		
15	Hinged	Simple	
	Fixed	Ioint	
	1 ////		
14	Hinge support is called as		
T	Socket joint	Swivel joint	
	Ball joint	Pin joint	

15			
	Name the support from the following figure.		
	, M		
	\sqrt{v}		
	H .		
	Hinge support	Fixed support	
	Free support	Roller support	
16	For a simply supported beam, the moment at	the support is always	
	Maximum	Zero	
	Minimum	Can not be determined	
1.7			
17	"Hinged support offers resistance against rota	ition".	
	Irue	False	
10	Find the reaction at simple support A?		
10			
	↓ ↑ ↑		
	A 1M 3M B	9 kN	
	A 1M 3M B $6.5 kN$ $10 kN$	9 kN 7 5 kN	
	A 1M 3M B $6.5 kN$ $10 kN$	9 kN 7.5 kN	
19	A $1M \rightarrow 3M \rightarrow B$ 6.5 kN 10 kN Roller support is same as	9 kN 7.5 kN	
19	A 1M 3M B 6.5 kN 10 kN Roller support is same as Hinged support	9 kN 7.5 kN Fixed support	
19	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support	9 kN 7.5 kN Fixed support Roller support	
19	A 1M 3M B 6.5 kN 10 kN Roller support is same as Hinged support Simply support	9 kN 7.5 kN Fixed support Roller support	
19	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged support	9 kN 7.5 kN Fixed support Roller support reaction.	
19	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged supports offer vertical and Horizontal	9 kN 7.5 kN Fixed support Roller support reaction.	
19 20	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged supports offer vertical and Horizontal Rotation	9 kN 7.5 kN Fixed support Roller support reaction. Moment Couple	
19	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged supports offer vertical and Horizontal Rotation	9 kN 7.5 kN Fixed support Roller support reaction. Moment Couple	
19 20 21	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged supports offer vertical and Horizontal Rotation Shear force is unbalanced to the left or	9 kN 7.5 kN Fixed support Roller support reaction. Moment Couple	
19 20 21	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged supports offer vertical and Horizontal Rotation Shear force is unbalanced to the left or Horizontal force	9 kN 7.5 kN Fixed support Roller support reaction. Moment Couple right of the section. Vertical force	
19 20 21	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged supports offer vertical and Horizontal Rotation Shear force is unbalanced to the left or Horizontal force Inclined force	9 kN 7.5 kN Fixed support Roller support reaction. Moment Couple • right of the section. Vertical force Conditional force	
19 20 21	A 3MB 6.5 kN 10 kN Roller support is same as Hinged support Simply support Hinged supports offer vertical and Horizontal Rotation Shear force is unbalanced to the left or Horizontal force Inclined force	9 kN 7.5 kN Fixed support Roller support reaction. Couple right of the section. Vertical force Conditional force	

	KN/m	KN-m
	KN-m×m	KN
23	Determine the moment at fixed end.	
	40 kNm	50 kNm
	60 kNm	80 kNm
24	Shear force is diagram is representatio	n of shear force plotted as ordinate.
	Scalar	Aerial
	Graphical	Statically
25	Hogging is	
	Negative bending moment	Positive shear force
	Positive bending moment	Negative shear force
26	At the project of contro florence, the color of hered	na manatia
26	At the point of contraffexure, the value of bendi	ng moment is
	Can't he determined	Minimum
	Call t be determined	Willington
27	positive/negative bending moments	occur where shear force changes its
	Minimum	Zero
	Maximum	Remains same
28	Shear force of following diagram	
	Rectangle	Square

	Circle	Trapezoidal		
29	SI units of Bending moment is			
	KN .	kN ²		
	kNm	km		
30	What is the other name for a positive bendu	ng moment?		
50	Hogging	Sagging		
	Inflation	Contraflexure		
31	Which of these is the correct way of sign co	onvention for shear force?		
	RUP (Right Upward Positive)	LUP (Left Upward Positive)		
	RUP (Right Upward Negative)	LUP (Left Downward Positive)		
22	At hinge, the moments will be			
32	Minimum	Maximum		
	Uniform	Zero		
	Cimorini	2010		
33	What is variation in SFD, if the type of load	ling in the simply supported beam is U.D.L is		
	Rectangle	Linear		
	Trapezoidal	Parabolic		
2.4				
34	Direction of load	Change in DMD		
	Intensity of loading	Change III BMD		
	Intensity of loading	Waximum bending		
35	The shear force in a beam subjected to pure	positive bending is		
	Positive	Negative		
	Uniform	Zero		
26				
36	In SFD, vertical lines are for			
	UVL			
37	A cantilever beam loaded with udl through	out, the maximum shear force occurs at		
	Free end	Fixed end		
	At centre	At point of contraflexure		
20		· · · · · · · · · · · · · · · · · · ·		
38	A simply supported beam of span 1 m carri shear force in the half left of the beam	les a point load w in the centre to determine the		
	W/3	W/4		
	W/2	W		
39	Point of inflection is known as			
	Point of recurrence	Point of contratlexure		
	Point of rigid factor	Point of flexural moment		
40	When SF is zero, the bending moment is			

	Zero	Maximum	
	Very difficult to say	Minimum	
41	A cantilever beam subjected to point load at its free end, the maximum bending moment		
	Free end	Fixed end	
	Centre	Point of inflection	
42	Bending moment in a beam is maximum when	the	
	Shear force is minimum	Shear force is maximum	
	Shear force is zero	Shear force is constant	
43	A simply supported beam of span "x" meters ca	arries a udl of "w" per unit length over the entire	
	span, the maximum bending moment occurs at		
	At point of contra flexure	Centre	
	End supports	Anywhere on the beam	
4.4			
44	Bending moment can be denoted by		
	K N		
	IN	F	
45	Number of points of contra flexure for a double	overhanging heam	
чЈ			
	<u> </u>	2 Infinite	
	T	Infinite	
46	Maximum bending moment in a cantilever bear	m subjected to udl (w)over the entire span (l).	
	wl	$ w ^3$	
	w ²	W	
	WI		
47	Determine the maximum bending moment for t	he below figure.	
	¥		
	АТТВ		
		w1/2	
	$w_{1/2}$ $w_{1/4}$	wl 3	
	VV 1/ T	VV I	
48	What is the variation in the BM if the simply s	upported beam carries a point load at the centre	
	Triangular	Rectangular	
	Trapezoidal	Other quadrilateral	
49	What is the bending moment at end supports of	a simply supported beam?	
	Maximum	Minimum	
	Zero	Uniform	
		· ·	

50	What is the maximum shear force, when a cantilever beam is loaded with udl throughout?		
	w x l	W	
	w / 1	w + 1	
51	Sagging, the bending moment occurs at the	of the beam.	
	At supports	Mid span	
	Point of contraflexure	Point of emergence	
52	How do point loads and udl be represented in S	SFD?	
	Simple lines and curved lines	Curved lines and inclined lines	
	Simple lines and inclined lines	Can't represent any more	
53	The relation between slope and maximum benc	ling moment is	
	Directly proportion	Inversely proportion	
	Relative proportion	Mutual incidence	
	Unit 5-Analys	is of Truss	
1	is a framed structure composed of	members.	
	Purlin	Gussets	
	Ridge tops	Truss	
-	m 1' / 1/		
2	I russes are subjected to stress.	TT 1	
	Compressive	lensile	
	Direct	Lateral	
2	Trugges are edented for		
3	Modium	Chout	
	Very large		
	very large	Large	
1	The top line of roof truss is called as		
4	Fire top line of root truss is called as	Main tie	
	Ditch	Ridge line	
	1 iteli	Kluge line	
5	If the members connected don't lie in the same	plane, then structures are called	
5	Space truss	Plane truss	
	Main truss	Foot truss	
6	is a structure made of slender mer	nbers which are joined together at their	
-	endpoints.		
	Truss	Beam	
	Pillar	Support	
	· · · ·		
7	trusses lie on a plane.		
	Planar	2D	
	Linear	3D	
		• •	
8	In a roof supporting truss the load is transmitted when		

	First to the truss then the joints through	First to the purlins then the joints through
	First to the truss then the purlins through joints	First to the joints then the trusses through purlins
9	As the loading is acting in the two dimensions, involved in the trusses are in 2D.	that is in a single plane. Thus the calculations
	True	False
	L	
	r ind the force in the includer for the name sin r $500 N$, r r $500 N$, r r r r r r r r r r	lown below.
	707.1N	500N
	505N	784N
11	To design the target of 1 1 Cd. C H. C. 1	
11	10 design the trusses which of the following rule	The leads are applied at the joints
	cables	The loads are applied at the joints
	All the loads are not applied at the joints	The loads are not applied at all to the joints
12	The rules which are used to design the trusses ar smooth pins are not used to join the members.	e having various rules. Of them one is that the
	Statement is correct	Statement is incorrect
	Statement is incorrect because there are no rules	Statement is incorrect as the rolling pins are used
13	Find the force in the member RQ of the frame sh	nown below.

	F 2m 400 N 2m 45° 3° P -2m	2m 20. 400N
	773N	1090N
	$R = \frac{2m}{5} \frac{400}{2m}$	2m 20.
	773N	1090N
15	A truss is in a triangular	section.
	Equilateral	Simple
	Complex	Lateral
	r -	
16	Find the force in the member PQ of	the frame shown below.

	$\frac{1}{p} = \frac{2m}{2m} + \frac{450}{30} + \frac{2m}{2m} + \frac{2m}{0} + \frac{2m}{$	6	
	566N	546N	
	773N	1090N	
17	Which of the following is correct?		
	To know the direction of the unknown	The direction of the unknown force is	
	force we take the assumption of it	known to us already	
	determined	use it is not founded	
	determined		
	Deficient truss	Perfect truss	
	Redundant truss	All of the above	
19	If a truss consists of 8 joints, 10 members and 4 reaction components then, it is a		
	cantilever truss	deficient truss	
	redundant truss	none of the above	
20	If $n > 2j - R$, then the truss is called as (n = number of joints, j = number of members perfect truss	s, R = number of reaction components) redundant truss	
	deficient truss	none of the above	
21	Which of the following statements is false ab	out frame/truss?	

	Bent member is never used in a truss	Internal hinges are used to connect
		members in a truss
	All members in the truss are two force	Multiforce members can be used in a
	members	frame
22		
ZZ	Redundant truss is a type of	incoments at trace
	perfect truss	imperiect truss
	stable truss	none of the above
23	Which of the following conditions is satisfied f	or cantilever truss?
23	m > 2i - R	m < 2i - R
	m = 2i - R	$m \neq 2j = R$ $m \neq 2j = R$
	III 2J K	
24	Which axial force is determined while analyzin	g a truss?
21	compressive force	tensile force
	both a and b	none of the above
		none of the above
25	Which of the following material is not used in	making trusses?
20	Wooden struts	Metal bars
	Channel	Concrete
26	There is no bending stresses in truss due to	
	Assumptions made	Design
	Materials used	Neither of them
27	If the whole truss is in equilibrium then all the joi	nts which are connected to that truss is
	Section method	Scalar field method
	Vector equilibrium method	Method of joints
	vector equilibrium method	Wethod of Joints
20	Find the force in the member vertical of the right	ising by the hinge
28	Find the force in the member vertical at the right,	Joined by the ninge.
	400 N.	
	e la at	
	1 A TE	
	R A	
	3m 3m Q 600N.	
<u> </u>	750N	450N
	200N	250N
29	The free body diagram of which part of the sectio	n of the truss is made to make use of method

	of joints?		
	Joints	Truss	
	The whole structure	The combination of joint and the whole	
		structure	
30	For applying the method of joint at joints the for	ces need to coplanar.	
	True	False	
31	For applying the method of joint at joints the for	ces need to be concurrent	
51	True	False	
32	Find the force in the member RO		
52	That the force in the member KQ.		
1			
	Luco N.		
	1,000		
	P K GF		
	$\langle \rangle \rangle \langle $		
	K A 3m 3m 0 KODN'		
	300 000		
	750N	450N	
	200N	250N	
33	We use the method of joints to find the forces ac	ting over the joints. In this we start from the	
55	joint having at least one known force and at the	most two unknown forces	
	The first part of the statement is false	The first part of the statement is false and	
	and other part is true	other part is false too	
	The first part of the statement is true and	The first part of the statement is true and	
	other part is false	other part is true too	
	other part is faise	other part is true too	
24	We use the method of joint to find the net force	acting over the entire structure	
54	True		
	Irue	Faise	
35	The magnitude of the unknown force can't be kr	nown. But the direction can be founded out.	
	The first part of the statement is false and	The first part of the statement is false and	
	other part is true	other part is false too	
	The first part of the statement is true and	The first part of the statement is true and	
	other part is false	other part is true too	
36	What is after taking the assumption of the direct	ion of the force, the direction comes opposite?	

	The assumption made was wrong and the	The assumptions are not to be taken
	question can't be solved further	Ĩ
	The direction is in the opposite sense,	The direction will be already given to us,
	and hence the direction is known to us	no need of assuming
37	Find the force in the member PQ.	
	400 N.	
	a la at	
	1 A AFE	
	/ { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	3m 3m 0 GODN'	
	750N	450NI
	750N 200N	450N 250N
	2001	2301
38	The magnitude of the resultant of the two vectors	is always:
50	Greater than one of the vector's	Smaller than one of the vector's
	magnitude	magnitude
	Depends on the angle between them	Axis we choose to calculate the
		magnitude
39	Find the force in the member PR.	
	400 N .	
	et at	
	1 THE	
	/ { \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	X 23m 3mg 600N.	
	750N	450NI
	200N	430IN 250N
	2001	23011
40	Which of the following is not an application of	trusses?
40	Flectric tower	Base of the building
	Roof	Advertisement Hoarding
	1001	
41	Which of the following material can not be use	ed for truss?
11	Concrete	Carbon Steel

	Tor Steel	GI	
42	42 Which of the following is a Pin joint in truss?		
	Top Joint	Bottom most joint	
	Lateral joints	All the joints	
43	How to denote if the value of member force is	s in compression?	
	By showing positive	By showing Negative	
	Both A and B	Either A or B	
44	Which of the following condition can be used	to solve a truss	
	Σ H= 0	$\Sigma V = 0$	
	Both A and B	None of the above	
45	If a joint has only two non-collinear members	and there is no external load or support	
	reaction at that joint, then those two members	are	
	Redundant members	Zero members	
	Deficient members	None of the above	
46	Which type of drawing is required to analyse	the truss?	
	Clear dimension drawing	Free body diagram	
	Double line diagram	Working drawing	
	I		
47	Reactions can never be		
	Vertical forces	Horizontal forces	
	Moments	None of the above	
48	What is an assumption to be made while analy	ysing the truss?	
	All unknown member forces act in	All unknown member forces act in	
	Compression	tension	
	Both A and B	Either A or B	
40		1	
49	Zero-force members can bewhen a	analyzing the truss.	
	Added	Removed	
	Doubled	None of the above	
50	How to denote if the velve of member former	in toncion?	
50	Dy showing positive	S III tension /	
	Dy snowing positive	Dy Showing Inegative	
1			

Best of Luck